Ingresa un problema...
Álgebra lineal Ejemplos
Paso 1
Paso 1.1
Consider the corresponding sign chart.
Paso 1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Paso 1.3
The minor for is the determinant with row and column deleted.
Paso 1.4
Multiply element by its cofactor.
Paso 1.5
The minor for is the determinant with row and column deleted.
Paso 1.6
Multiply element by its cofactor.
Paso 1.7
The minor for is the determinant with row and column deleted.
Paso 1.8
Multiply element by its cofactor.
Paso 1.9
Add the terms together.
Paso 2
Multiplica por .
Paso 3
Paso 3.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 3.2
Simplifica el determinante.
Paso 3.2.1
Simplifica cada término.
Paso 3.2.1.1
Multiplica por .
Paso 3.2.1.2
Cancela el factor común de .
Paso 3.2.1.2.1
Mueve el signo menos inicial en al numerador.
Paso 3.2.1.2.2
Factoriza de .
Paso 3.2.1.2.3
Factoriza de .
Paso 3.2.1.2.4
Cancela el factor común.
Paso 3.2.1.2.5
Reescribe la expresión.
Paso 3.2.1.3
Combina y .
Paso 3.2.1.4
Multiplica por .
Paso 3.2.2
Suma y .
Paso 4
Paso 4.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 4.2
Simplifica el determinante.
Paso 4.2.1
Simplifica cada término.
Paso 4.2.1.1
Multiplica por .
Paso 4.2.1.2
Multiplica por .
Paso 4.2.2
Suma y .
Paso 5
Paso 5.1
Suma y .
Paso 5.2
Simplifica cada término.
Paso 5.2.1
Cancela el factor común de .
Paso 5.2.1.1
Cancela el factor común.
Paso 5.2.1.2
Reescribe la expresión.
Paso 5.2.2
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 5.2.3
Combina y .
Paso 5.2.4
Cancela el factor común de .
Paso 5.2.4.1
Cancela el factor común.
Paso 5.2.4.2
Reescribe la expresión.
Paso 5.3
Suma y .